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ABSTRACT 
Taxonomies are used to organize knowledge in many applications, 
including recommender systems, content browsing, or web search. 
With the emergence of new concepts, static taxonomies become 
obsolete as they fail to capture up-to-date knowledge. Several ap-
proaches have been proposed to address the problem of maintaining 
taxonomies automatically. These approaches typically rely on a 
limited set of neighbors to represent a given node in the taxonomy. 
However, considering distant nodes could improve the representa-
tion of some portions of the taxonomy, especially for those nodes 
situated in the periphery or in sparse regions of the taxonomy. 

In this work, we propose TaxoComplete, a self-supervised tax-
onomy completion framework that learns the representation of 
nodes leveraging their position in the taxonomy. TaxoComplete 
uses a self-supervision generation process that selects some nodes 
and associates each of them with an anchor set, which is a set 
composed of nodes in the close and distant neighborhood of the 
selected node. Using self-supervision data, TaxoComplete learns 
a position-enhanced node representation using two components: 
(1) a query-anchor semantic matching mechanism, which encodes 
pairs of nodes and matches their semantic distance to their graph 
distance, such that nodes that are close in the taxonomy are placed 
closely in the shared embedding space while distant nodes are 
placed further apart; (2) a direction-aware propagation module, 
which embeds the direction of edges in node representation, such 
that we discriminate <node, parent> relation from other taxonomic 
relations. Our approach allows the representation of nodes to encap-
sulate information from a large neighborhood while being aware of 
the distance separating pairs of nodes in the taxonomy. Extensive 
experiments on four real-world and large-scale datasets show that 
TaxoComplete is substantially more efective than state-of-the-art 
methods (2x more efective in terms of HIT@k). 
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1 INTRODUCTION 
Taxonomies are widely used to organize concepts in a hierarchical 
structure through "is-a" relations between concepts. They have 
a wide range of applications, including product search [20] and 
recommendation [23] in the e-commerce domain, articles classi-
fcation and clustering [24] in the scientifc domain, and content 
browsing [19] in the web search domain. Many platforms such 
as Amazon 1, Google 2 and Bing 3 rely on curated taxonomies to 
enhance search quality, user profling, ads targeting, and content 
categorization. Most of these taxonomies are manually curated by 
domain experts, making them highly valuable resources. 

With the emergence of new concepts, existing taxonomies slowly 
become obsolete. Therefore, it becomes crucial to maintain them 
such that they remain relevant. A straightforward approach to-
wards that end consists in relying on human experts to update 
existing taxonomies. Pinterest, for example, reported on their use 
of eight curators to append 5,000 new nodes to their taxonomy over 
a period of two months [3]. This updated taxonomy measurably 
increased revenue gains, thanks to the improvement it led in tar-
geted ads. Nonetheless, this manual curation process was proven 
to be prohibitively expensive and slow, as it cannot keep up with 
the millions of new content items created by Pinterest users daily. 
Due to the rapid growth in content creation on many platforms, 
updating existing taxonomies dynamically becomes an ever more 
pressing challenge [10]. 

Several strategies have been developed to update taxonomies 
dynamically. Overall they are based on two key modules: a propa-
gation module and a matching module. The propagation module 
represents nodes in the existing taxonomy by aggregating informa-
tion surrounding a given node, for instance from its local neigh-
borhood [15], local mini-paths [21], its ancestral and descendant 
paths [5], or paths from the root to leaf nodes [8]. The matching 
module learns how to identify the best parent for the given node us-
ing the node representation obtained from the propagation module. 
Existing methods typically map this problem to a binary classifca-
tion task and predict whether a new query node is the direct child 
of a parent node. To that end, existing methods either rely on a 
classifer [8, 15] or combine multiple scoring functions [5, 22]. 
1www.amazonlistingservice.com/blog/amazon-store-taxonomy-organization 
2www.google.com/basepages/producttype/taxonomy.en-US.txt 
3help.ads.microsoft.com/#apex/ads/en/51112/1 
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Figure 1: An example of a completion task for a computer science taxonomy. The left fgures illustrate: (a) the existing 
taxonomy of computer science; (b) the self-supervision data generated from the existing taxonomy by extracting a query node 
"relational database" and its anchor set composed of nodes from its close neighborhood such as "database" and from its distant 
neighborhood such as "supervised learning" and labeling each pair with the inverse of the graph distance separating them; the 
right fgure illustrates: (c) new concepts that are added to (d) the updated taxonomy. 

These methods sufer from several limitations. First, the propa-
gation module often consists of a variant of graph convolutional 
networks, which only use the information of a limited neighbor-
hood for each node [1]. Second, they aggregate the structural in-
formation collected from the chosen neighborhood, which leads to 
losing fne-grained information that can be useful for learning the 
semantic distance between node pairs and their connection with 
the rest of the taxonomy. Third, using a binary classifer as the 
matching module to predict if a pair of nodes have a child-parent re-
lation or not raises the issue of lexical memorization [7, 11]: instead 
of learning the child-parent relation, the matching module might 
mistakenly learn the existence of a diferent taxonomic relation 
such as <node, sibling> relation. 

In this paper, we introduce TaxoComplete, a novel self-supervised 
framework for the taxonomy completion task, where given a new 
node and an existing taxonomy, we aim to identify the position of 
the new node in the existing taxonomy. Our framework automati-
cally constructs candidate node pairs from an existing taxonomy 
and uses them to learn a position-enhanced semantic matching 
model for completing the taxonomy. Specifcally, we sample some 
concepts in the existing taxonomy and view them as query nodes. 
Then, we associate each of them with an anchor set, i.e., a set of 
nodes in the close and distant neighborhood of a query node. The 
close neighborhood of a query node includes nodes representing its 
parent, siblings, and children, which helps defne the query node’s 
exact position. The distant neighborhood includes nodes randomly 
sampled from the existing taxonomy, which helps locate nodes with 
a small close neighborhood such as nodes situated in the periphery 
or sparse regions of the taxonomy. Each pair of <query node, anchor 
node> is labeled with a score proportional to the graph distance, i.e., 
the length of the shortest path separating them in the taxonomy. 
For instance, in Figure 1, the graph distance separating the <Rela-
tional database, Machine learning> pair is 3; therefore, we label this 
pair with a score of 1/3. Unlike existing methods which consider 
only positive and negative pairs, our labeling method allows us to 
capture fne-grained information. 

To make the best use of the above self-supervision data, our 
framework semantically matches nodes in the taxonomy by utiliz-
ing two modules: a query-anchor semantic matching mechanism 
and a direction-aware propagation module. First, the query-anchor 

semantic matching mechanism matches the semantic distance be-
tween two nodes to the graph distance separating them in the tax-
onomy. To that end, TaxoComplete inherits from recent advances 
in the semantic search domain and adopts bi-encoders [13, 17] 
to efciently compare node pairs. With bi-encoders, we encode 
pairs of nodes using their defnition from a supporting corpus such 
that they can be compared with cosine-similarity. Then, we opti-
mize model learning such that the semantic distance separating 
the defnitions of a pair of nodes matches the distance separat-
ing them in the taxonomy. Our query-anchor semantic matching 
mechanism learns the taxonomic position of nodes but not edges 
direction, which limits its ability to discriminate <node, parent> 
relation from other types of taxonomic relations. To enhance the 
node representations obtained from the bi-encoders with the edges’ 
direction, we design a direction-aware propagation module. This 
module weights the node representations with the signifcance of 
other nodes directed to it. Through our query-anchor semantic 
matching mechanism and direction-aware propagation module, we 
preserve fne-grained information and obtain node representations 
that faithfully captures the taxonomic structure. 

We conduct extensive experiments on four real-world datasets to 
compare TaxoComplete performance to state-of-the-art methods. In 
addition, we design several variants of our framework to conduct 
an ablation study and shed additional light on the performance 
of our approach and its various sub-modules. Our results show 
that TaxoComplete can accurately predict the correct position of a 
query node. To the best of our knowledge, we are the frst to en-
hance semantic matching with the node position for the taxonomy 
completion problem. 

In summary, we make the following key contributions: 
• We develop TaxoComplete – a self-supervised taxonomy 
completion framework leveraging position-enhanced seman-
tic matching; 

• We propose a query-anchor semantic matching mechanism 
that encodes pairs of nodes and matches their semantic 
distance to their graph distance, which is subsequently en-
hanced with a direction-aware propagation module; 

• We conduct an extensive empirical evaluation of our method 
on four real-world datasets and show that TaxoComplete 
improves the state of the art by a considerable margin (2x 
performance improvement in terms of HIT@k). 
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2 RELATED WORK 
In this section, we discuss the state of the art in dynamic mainte-
nance of taxonomies, before methodologically reviewing related 
work in semantic similarity search. 

2.1 Taxonomy Expansion and Completion 
Updating taxonomies when new concepts emerge is a laborious 
and expensive process. Several methods have been developed to 
tackle the taxonomy maintenance problem automatically. We dis-
tinguish between two tasks for maintaining taxonomies: expansion 
and completion. In the taxonomy expansion task, new concepts are 
added as leaf nodes. To this end, several methods have been devel-
oped [11, 12, 15]. TaxoExpan [15], for example, learns a position-
enhanced graph neural network to predict the relative position of 
nodes in the taxonomy and uses the InfoNCE [12] loss for training 
their model. Manzoor et al. [11] tackle the expansion problem for 
taxonomies with heterogeneous edge semantics and learn latent 
representations of both edges and nodes to measure the relatedness 
between nodes. Yu et al. [21] propose to map the problem to a 
mini-path prediction task where they use a multi-view co-training 
objective to match a query with a mini-path sampled from the exist-
ing taxonomy. A similar approach is adopted by TEMP [8], which 
predicts the position of new concepts by ranking the sub-paths from 
the taxonomy. In the taxonomy completion task, new concepts are 
added at any level of the taxonomy. Among the frst methods de-
veloped for the completion task is TMN [22], which reformulates 
the problem to a one-to-pair matching problem and uses diferent 
scoring functions to estimate a matching score between a query 
node and a pair of hypernym and hyponym concepts. An extension 
of the TMN approach was developed by Jiang et al. [5], where the 
authors consider the siblings of a query node by incorporating 
horizontal structural information in the taxonomy in addition to 
encoding candidate pairs. 

Most of the existing methods train their models with positive and 
negative candidates, disregarding fne-grained information such as 
the graph distance between pairs of nodes. As a result, they often 
mistakenly predict the existence of a taxonomic relationship instead 
of the targeted parent-child relation. Compared to these methods, 
our approach adopts a position-enhanced semantic matching frame-
work where we incorporate the graph distance separating pairs of 
nodes into the learning of the node representation. Our method 
efectively captures the position of the nodes in the taxonomy as 
well as the overall structure of the taxonomy. 

2.2 Semantic Similarity Search 
In taxonomy completion, nodes in the taxonomy are often associ-
ated with a defnition from a supporting corpus. To fnd the ade-
quate parent of a new node in the existing taxonomy, one typically 
searches through the defnitions of all nodes in the existing taxon-
omy. This problem is akin to a semantic similarity search problem, 
which aims to identify the most similar items in a large-scale corpus. 
Recently, much work has been dedicated to addressing the semantic 
similarity search problem in document collections, especially for 
the task of open-domain question answering. Many state-of-the-art 
methods in semantic similarity search retrieve relevant documents 
using a bi-encoder to encode the query document and a document 

from the corpus, respectively, and estimates their relevance by com-
puting a single similarity score between two representations [25]. 
For instance, Karpukhin et al. develop a dense passage retriever [6] 
which uses a dense encoder to map a textual document to a d-
dimensional vector and then measures the similarity between two 
documents with the dot product. TwinBERT [9] uses bi-encoders 
to represent a query and a document separately, then combines 
the vector outputs of encoders with a crossing layer to measure 
the relevance between the two. Similarly, bi-encoders were used to 
derive semantically meaningful sentence embeddings that can be 
compared with cosine-similarity [2, 13]. 

In our work, we draw inspiration from these developments and 
leverage a bi-encoder to measure the similarity between node pairs. 
Furthermore, we enhance their representation to refect their graph 
distance in the taxonomy. The idea of using semantic similarity 
measures in taxonomies has been studied for a wide range of ap-
plications [18, 26]. To the best of our knowledge, however, we are 
the frst to propose a new semantic similarity method leveraging 
bi-encoders to tackle the taxonomy completion problem efectively. 

3 TAXOCOMPLETE FRAMEWORK 
In this section, we introduce our position-enhanced semantic match-
ing framework that learns to predict the best position of a query 
node in a given taxonomy. We frst formally defne our problem 
and then discuss how we generate self-supervision data from the 
existing taxonomy. We then describe the modules of our framework 
followed by our algorithm for taxonomy completion. 

3.1 Problem Formulation 
In this section, we formally defne the concept of taxonomy and 
then formulate our problem. 

Defnition 3.1 (Taxonomy). A taxonomy T is a directed acyclic 
graph with nodes N connected with edges E. Each node � ∈ N 
represents a concept associated with its defnition �� from a sup-
porting corpus D. Each directed edge < �� , �� > denotes a relation 
where �� is a more general concept than �� . We refer to �� as a 
parent node and �� as a child node. 

Defnition 3.2 (Problem Defnition). Let T0 = (N0, E0) be a seed 
taxonomy where N0 and E0 are the nodes and the edges in T0, 
respectively. Let C be a set of new terms and D a corpus defning 
all nodes in the existing taxonomy T0 and the new terms C. Our goal 
is to complete the taxonomy T0 and construct its updated version 
T such that T = T0 ∪ C. Specifcally, we aim to represent nodes in 
the embedding space such that their semantic distance matches the 
distance separating them in the taxonomy. Formally, given a pair 
of nodes � and � represented with vectors �� and �� respectively, 
our goal is to approximate their graph distance with their cosine 
similarity, i.e., we aim to minimize the following function: 

��� (��, �� ) − �������� (�, �) (1) 

3.2 Self-Supervised Learning with 
Position-Enhanced Semantic Matching 

3.2.1 Self-supervision Generation. We create query nodes and their 
respective anchor sets from the seed taxonomy to train our taxon-
omy completion model. We proceed by randomly sampling query 
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Figure 2: Overview of the TaxoComplete framework. From left to right: we initialize the node representation of a query node 
and a node from its anchor set. Then, we learn the semantic relatedness of nodes with our query-anchor semantic matching 
mechanism. Finally we inject edges’ direction using a direction-aware propagation module. 

nodes from the seed taxonomy. Then, for each query node �, we 
construct its anchor set composed of a close and a distant neigh-
borhood: 

• close neighborhood: For each query node, we select its 
siblings, its ancestral nodes, and its children nodes denoted 
respectively S� , A� and C� . Sibling nodes S� are nodes that 
share the same parent with a query node �. Ancestral nodes 
A� identify all nodes in the path connecting the root node to 
the query node �, while children nodes C� are the children 
of �. Overall, the close neighborhood B�,� of a query node 
� is composed of all siblings S� , ancestral nodes A� , and 
children nodes C� , i.e., B�,� = S� ∪ A� ∪ C� . 

• distant neighborhood: We randomly select a set of nodes 
from the seed taxonomy that are not in the close neighbor-
hood of the query node �. We choose the size of the distant 
neighborhood B�,� to be larger than the size of the close 
neighborhood by a sampling rate �� , i.e., |B�,� | = �� × B�,� . 
We empirically study the impact of the distant neighborhood 
size on the discriminative capabilities of TaxoComplete in 
Section 4.4.2. 

We associate a pair of <query node, anchor node> with the 
following labeling function: 

1 
��,� = , (2)

� (��,� )
where ��,� is the graph distance separating a query node � from 
an anchor node � in the close or the distant neighborhood and 
� (.) is a linear function. To measure the distance between a query 
node and an anchor node, we omit the direction in the taxonomy 
and consider it as an undirected graph. We empirically compare 
the impact of including and omitting the direction in the labeling 
function in Section 4.4.1 and found that omitting the direction led 
to better results. 

3.2.2 Qery-Anchor Semantic Matching Mechanism. Given a query 
node � with its defnition �� and a node from its anchor set � with its 
defnition �� , we use a bi-encoder to generate their respective repre-
sentations �� and �� . This bi-encoder is a twin network with shared 
Transformer weights [4, 13]. Each network in the bi-encoder is com-
posed of a pre-trained Transformer model � (e.g., distllBERT [14]) 
that maps the nodes’ defnitions to an initial node representation �� 
and �� , then a pooling layer is applied on each vector to represent 
the query node �� and the anchor node �� . The encodings �� and 

�� are formulated as follows: 

�� = �������(� (��, � )), �� = �������(� (��, � )) (3) 

We fne-tune the bi-encoder and update the model parameters � 
such that nodes that are close in the taxonomy are placed closely 
in the shared embedding space while unrelated nodes are placed 
further apart. To that end, we use a regression loss function, specif-
ically the mean-squared error loss function, to approximate the 
cosine similarity between the two node encodings �� and �� to our 
labeling function. ∑ 1 � 

L(� ) = (��� (��, �� ) − ��,� )2 (4)
� 

�=1 

At inference time, nodes from the seed taxonomy with the high-
est similarity score with a new query node can be efciently re-
trieved using our semantic matching mechanism. However, it does 
not consider edges’ direction in node representations, which lim-
its its ability to identify <node, parent> relation. To mitigate this 
problem, we design a direction-aware propagation module. 

3.2.3 Direction-Aware Propagation Module. We inject the direction 
of the edges using a direction-aware propagation module in order to 
enhance the node representation. To do so, we propagate the node 
features with a variation of personalized PageRank, namely the 
personalized propagation of neural predictions [1]. Formally, we 
associate the taxonomy T0 with its adjacency matrix A ∈ R |N |× |N | , 
where |N | is the number of nodes in T0. We defne the symmetrically 
normalized adjacency matrix as follows: 

D− 1 
D− 1 

Â = e 2 Aee 2 (5) 

where Ae = A + I�,� is the adjacency matrix with added self-loops, 
I |N | is the identity matrix and De = 

Í 
A�, � is the graph degree e

� ∈N 
matrix with the addition of self-loops. The position-enhanced node 
representation is given by: 

�� = � (I |N | − (1 − �)Â )−1�� (6) 

where � is a propagation factor, empirically defned between 0 and 
1. The resulting vector �� can be viewed as the node representation 
vector �� weighted by the signifcance of other nodes directed to 
the query node �. 

Calculating the term (I |N | − (1 − �)Â )−1 requires to construct 
an |N | × |N | matrix, which is computationally intensive in large 
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Algorithm 1: Learning TaxoComplete Parameters 
Input : Seed taxonomy T0, adjacency matrix A 
Output : Nodes representation �� , updated parameters � 

1 Q = sample(T0) 
2 # self-supervision generation 
3 for � in Q do 
4 B�,� = close_neighborhood(�); 
5 B�,� = distant_neighborhood(�); 

6 # Query-Anchor Semantic Matching Mechanism 
7 while L(� ) has not converged do 
8 for � in Q do 
9 �� = �������(� (��, � )); 

10 �� = �������(� (��, � )), with � ∈ B�,� ∪ B�,� ; 

11 Update � based on Q 

12 # Direction Aware Propagation module 
13 �� = propagate(��, A), with � in T0; 

taxonomies. An approximation of Eq.(6) is calculated as follows [1]: 

� 0 = �� � 

(� −1)
�� = (1 − �)Â � + ��� (7)� � 

The computation of ��� is repeated � times until convergence where 
� denotes the iteration number. Using this approximation, we do 
not construct a full R |N |× |N | matrix, which allows for efcient 
inference. 

3.3 Algorithm 
Our overall training algorithm is given in Algorithm 1. Given a 
seed taxonomy T0 and the adjacency matrix A, TaxoComplete frst 
generates a set of self-supervision data (rows 1-5), then learns node 
representations with a query-anchor semantic matching mecha-
nism (rows 7-11) and fnally injects the direction of the edges with 
a direction-aware propagation module (row 13). In rows 1-5, query 
nodes from the seed taxonomy are sampled (row 1), and close and 
distant neighborhoods are built for each query node (rows 3-5). In 
rows 7-11, the parameters � are learned by minimizing the loss 
function from Eq. (4). Finally, we inject the direction information 
into the node representation in row 13 using Eq. (7). 

4 EXPERIMENTS 
In this section, we present the results of our empirical evaluation4. 
We frst discuss our experimental setup, then evaluate the perfor-
mance of TaxoComplete by comparing it with baseline methods. 
Finally, we perform an in-depth analysis of TaxoComplete ’s main 
properties. We aim at answering the following questions: 

• Q1: How efective is our framework in identifying the correct 
position of a query node? (Section 4.2). 

• Q2: What is the impact of injecting the direction of the edges 
into our node representation? (Section 4.3). 

4Source code and data are available at https://github.com/eXascaleInfolab/ 
TaxoComplete 

Table 1: Description of the taxonomy Datasets. 

Dataset #nodes #edges Depth 
SemEval-Noun 75,359 76,810 20 
SemEval-Verb 13,715 13,407 13 
MAG-WIKI-CS 25,170 40,314 6 
MAG-WIKI-PSY 10,671 14,080 6 

• Q3: What is the impact of the labeling function on the per-
formance of our method and how efective is our sampling 
strategy in capturing the position of the nodes in the taxon-
omy? (Section 4.4). 

4.1 Experimental Setup 
4.1.1 Datasets. We evaluate the performance of TaxoComplete 
using the following datasets: 

• SemEval: This dataset is based on WordNet 3.05, which con-
tains verbs, nouns and the relations among them. We derive 
two datasets from it, which we refer to as SemEval-Noun 
and SemEval-Verb, respectively. 

• MAG-WIKI: This dataset is derived from the original Mi-
crosoft Academic Graph [16] dataset. MAG is a heteroge-
neous graph containing over 660k felds of study and 700k 
taxonomic relations. For each concept in the MAG, we ex-
tract its defnition from Wikipedia. Following previous stud-
ies [15, 22], we construct two datasets MAG-CS-WIKI and 
MAG-PSY-WIKI, which are respectively based on the sub-
graphs for computer science and psychology. 

These taxonomies interlink concepts, not just words. As a result, 
words that have similar meanings are semantically disambiguated. 
Each node in the taxonomy is associated with a defnition from a 
supporting corpus. We use the SemEval corpus and Wikipedia to de-
fne nodes respectively in the SemEval and MAG taxonomies. Both 
taxonomies are manually-verifed and are often used for taxonomy 
expansion and completion tasks. Key statistics on the collected 
dataset are reported in Table 1. 

4.1.2 Evaluation Metrics. Our method generates a list of candi-
date positions for each query node in the test set. To evaluate its 
performance, we use the following ranking metrics: 

• Mean Rank (MR) calculates the mean rank position of a 
query concept’s true parent among all candidates. Smaller 
MR value indicates better model performance. 

• HIT@k is the number of query concepts’ true positions 
ranked in the top-� , divided by � . 

4.1.3 Baseline Methods. We compare our approach with the fol-
lowing state-of-the-art techniques: 

• Arborist [11]: is used for taxonomy expansion. It takes into 
account heterogeneous edge semantics and optimizes a large-
margin ranking loss with a dynamic margin function. 

• TaxoExpan [15]: uses position-enhanced graph neural net-
works to capture local information. This methods was devel-
oped for the taxonomy expansion task. 

5https://wordnet.princeton.edu/ 
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Table 2: Performance (MR and Hit@k) comparison of taxonomy completion techniques on four datasets. The best performance 
is highlighted in bold; the second best performance is marked by ‘*’. We run all methods fve times with diferent seeds and 
report the average result with standard deviation. 

Method 
SemEval-Noun SemEval-Verb 

MR HIT@1 HIT@5 HIT@10 MR HIT@1 HIT@5 HIT@10 
TaxoExpan 1236.4 ± 465* 0.069 ± 0.005 0.172 ± 0.023 0.248 ± 0.035 876.1 ± 123* 0.072 ± 0.010 0.186 ± 0.021 0.251 ± 0.021* 
TMN 2237.4 ± 1087 0.036 ± 0.006 0.112 ± 0.009 0.174 ± 0.016 1931.9 ± 525 0.063 ± 0.007 0.160 ± 0.020 0.224 ± 0.026 
Arborist 3993.1 ± 1295 0.020 ± 0.003 0.076 ± 0.009 0.122 ± 0.015 1878.8 ± 329 0.032 ± 0.005 0.100 ± 0.013 0.159 ± 0.018 
TaxoEnrich 1703.5 ± 319 0.094 ± 0.015* 0.229 ± 0.033* 0.312 ± 0.038* 2762.0 ± 679 0.087 ± 0.027* 0.188 ± 0.046* 0.240 ± 0.063 
TaxoComplete 474.4 ± 57 0.176 ± 0.008 0.427 ± 0.009 0.541 ± 0.008 589.3 ± 132 0.123 ± 0.010 0.316 ± 0.016 0.421 ± 0.028 

Method 
MAG-PSY-WIKI MAG-CS-WIKI 

MR HIT@1 HIT@5 HIT@10 MR HIT@1 HIT@5 HIT@10 
TaxoExpan 2688.0 ± 1434 0.070 ± 0.021 0.187 ± 0.045 0.252 ± 0.062 7320.1 ± 3065 0.007 ± 0.003 0.026 ± 0.006 0.047 ± 0.012 
TMN 3225.7 ± 1918 0.097 ± 0.022* 0.189 ± 0.043 0.226 ± 0.05 5271.9 ± 4154 0.040 ± 0.009 0.110 ± 0.022 0.150 ± 0.032 
Arborist 3698.0 ± 2083 0.046 ± 0.023 0.134 ± 0.032 0.176 ± 0.04 5925.7 ± 4843 0.020 ± 0.007 0.062 ± 0.019 0.095 ± 0.029 
TaxoEnrich 2664.9 ± 1473* 0.094 ± 0.023 0.215 ± 0.054* 0.272 ± 0.069* 4954.9 ± 3117* 0.049 ± 0.013* 0.131 ± 0.037* 0.183 ± 0.052* 
TaxoComplete 560.6 ± 23 0.170 ± 0.020 0.392 ± 0.025 0.488 ± 0.019 1085.9 ± 115 0.166 ± 0.019 0.346 ± 0.016 0.440 ± 0.018 

• TMN [22]: is used for taxonomy completion where it maps 
the problem to a one-to-pair matching problem. 

• TaxoEnrich [5]: encodes for each query node its ancestral 
and descendant paths in addition to its siblings. This method 
was designed for the taxonomy completion task. 

We adapt methods designed for taxonomy expansion, namely Ar-
borist and TaxoExpan, to the taxonomy completion problem by 
using the same comparison strategy used in [5, 22] where we con-
catenate the representation of the parent node and the child node 
as the candidate node representation of a given node. 

4.1.4 Data Split. For each dataset, we randomly sample 1000 nodes 
to construct each of our validation and test sets. The remaining 
nodes represent our seed taxonomy T0, from which we construct 
our training set. Each node is associated with a defnition from a 
supporting corpus, from which we learn an initial embedding vector 
of a fxed-size �� by leveraging pre-trained language models. We 
use DistllBert fne-tuned on various question answering datasets 6 

as pre-trained word embeddings for all datasets. 

4.2 Comparison with the State of the Art 
Table 2 summarizes the performance of TaxoComplete against all 
comparison methods on both the SemEval and MAG datasets. We 
make several observations. 

First, among the baslelines, we observe that TaxoEnrich performs 
better than other methods in terms of HIT@k on both datasets. Re-
call that TaxoEnrich encodes the position of a node with its close 
neighborhood, including its ancestral and descendant paths in ad-
dition to its siblings, which better captures structural information 
than methods encoding only parents and children, such as Taxo-
Expan and TMN. Second, we observe that methods that encode 
the local neighborhood of a candidate node with Neural Tensor 
Networks, such as TaxoEnrich and TMN, consistently outperform 
other methods on the MAG datasets. This is probably due to the way 
they model diferent types of relations in the close neighborhood 
of a candidate node, which is useful in dense taxonomies such as 
the MAG datasets, in particular in the MAG-CS-WIKI (see Figure 5 

6https://huggingface.co/sentence-transformers/multi-qa-distilbert-cos-v1 

(c,d) in the appendix). Third, we observe that TaxoExpan performs 
relatively well on the SemEval dataset, while TMN performs better 
than TaxoExpan on the MAG datasets. Note that the main diference 
between these two methods resides in their query-anchor match-
ing mechanism, where TaxoExpan uses a log-bilinear model, while 
TMN uses a channel-wise gating mechanism. This result indicates 
that for sparse taxonomies such as SemEval (see Figure 5 (a,b) in 
the appendix), it is hard to learn the relatedness between query 
nodes and candidate positions using local neighborhoods only. 

Most importantly, TaxoComplete achieves the best performance 
both in MR and HIT@k. Overall, our method is overall 2x better 
than the second-best method in terms of HIT@k on all datasets. For 
instance, it achieves 0.170 HIT@1 compared with the second-best 
method, TMN, which achieves 0.097 HIT@1 in the MAG-PSY-WIKI. 
Our method also reduces the MR by a large margin, achieving an 
MR of 560.6, while the second-best method TaxoEnrich achieves 
2664.9 MR in the MAG-PSY-WIKI. This substantial diference is 
mainly due to how we represent the semantic distance between 
node pairs as dependent on their graph distance in the taxonomy, 
which encapsulates fne-grained information about a node’s posi-
tion, unlike existing methods that consider pairs of nodes as either 
related or not. These signifcant gains demonstrate the efectiveness 
of our framework in completing taxonomies. 

4.3 Ablation Study 
To further confrm the impact of our direction-aware propagation 
module, we conduct an ablation study comparing TaxoComplete to 
a simplifed version with only the query-anchor semantic matching 
mechanism (TaxoComplete-Matching). We also compare the exact 
version of the direction-aware propagation module (TaxoComplete-
Exact) against its approximation in TaxoComplete. The results are 
shown in Figure 3. 

We observe that TaxoComplete substantially improves the per-
formance of TaxoComplete-Matching by over 59.12% HIT@1 on the 
SemEval datasets and by 10.54% HIT@1 on the MAG datasets. Taxo-
Complete also decreases the MR by 15.14% on the SemEval datasets 
and by 3.84% on the MAG datasets. This result indicates that our 
direction-aware propagation module substantially improves the 
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Table 3: Top-4 predicted parents by TaxoComplete and TaxoComplete-Matching on the MAG-CS-WIKI. The parent of the query 
node is highlighted in bold. 

Query Predicted Candidates with TaxoComplete 
depth frst search 
interaction overview diagram 
schema migration 
coupling loss 

beam search, search algorithm, graph traversal, incremental heuristic search 
class diagram, object diagram, communication diagram, sequence diagram 
database schema, database model, database design, information schema 

optical fber, aperture to medium coupling loss, photonic chip, refection loss 
Query Predicted Candidates TaxoComplete-Matching 
depth frst search 
interaction overview diagram 
schema migration 
coupling loss 

graph traversal, beam search, best frst search, brute force search 
object diagram, communication diagram, uml tool, class diagram 

database schema, information schema, database refactoring, database theory 
aperture to medium coupling loss, photonic chip, insertion loss, refection loss 

Figure 3: Comparison of TaxoComplete with its variants on 
SemEval (top fgures) and MAG (bottom fgures) datasets. 
Note that TaxoComplete-Exact runs out of memory in the 
SemEval-Noun dataset. 

node representation obtained through the semantic matching mech-
anism. An in-depth analysis of TaxoComplete-Matching results re-
veals two main properties: 1) Nodes that are close in the taxonomy 
are closely placed in the embedding space. We fnd that the cosine 
similarity between the node representation vectors obtained using 
TaxoComplete-Matching of a random sample of pairs of nodes is 
similar to the inverse of their graph distance, where their Pearson 
correlation is 0.594 (see Figure 7 in appendix); and 2) TaxoComplete-
Matching is unable to distinguish <query, sibling> from <query, par-
ent> relation as illustrated through the example 4.1. We also observe 
that TaxoComplete-Exact can only be applied on moderately-sized 
taxonomies, while it runs out of memory on the SemEval-Noun, the 
largest taxonomy in our dataset. This is probably due to the proce-
dure of TaxoComplete-Exact that builds a dense matrix R |N |× |N | , 
which is computationally intensive for inference. The performance 
of TaxoComplete is similar to TaxoComplete-Exact in terms of MR 
and HIT@1 on the MAG and SemEval-Verb, which confrms the 

efectiveness of our approximation of direction-aware propagation, 
as it achieves similar performance to TaxoComplete-Exact while 
being able to scale to much larger taxonomies. 

Example 4.1. Table 3 reports the top-ranked predicted parents 
for some query nodes by both TaxoComplete and by TaxoComplete-
Matching, where we highlight in bold the true parents. We observe 
that all incorrectly predicted candidates by both TaxoComplete and 
TaxoComplete-Matching are siblings with the query node in the 
MAG-CS-WIKI taxonomy. We also observe that TaxoComplete is 
more likely to identify the true parent in the top-ranked candidates 
than TaxoComplete-Matching. These results confrm that the se-
mantic matching mechanism alone can identify some relatedness 
between pairs of nodes but mistakenly identifes the <query, sib-
ling> relation as a <query, parent> relation due to the similarity 
in the descriptions of query nodes and their siblings. For instance, 
"depth-frst search" is defned as "an algorithm for traversing or 
searching tree or graph data structures, etc.", which contains both 
keywords "traverse" and "graph". These keywords are also found 
in the defnition of "graph traversal", which is the top candidate 
predicted by TaxoComplete-Matching but is in our taxonomy a 
sibling to "depth-frst search" and not his parent. 

4.4 Method Properties 
4.4.1 Impact of the Labeling Function. Our loss function strongly 
depends on the choice of our labeling function (see Eq. 4). The la-
beling function has to refect the following intuition: nodes close in 
the taxonomy should have a higher score than those placed further 
apart. We compare diferent labeling functions (1/� , ±1/� , 1/�2, 
±1/�2) that refect our intuition. The sign in the labeling functions 
±1/� , ±1/�2 indicates the direction of the edge between pairs of 
nodes, where a positive sign indicates a <query, ancestral node> 
relation while a negative sign indicates a <query, descendant node> 
relation. Unsigned labeling functions omit the direction within the 
taxonomy. We also compare with a binary labeling function where 
a pair of nodes is assigned a label "one" if they have a <query, par-
ent> relation and a label "zero" for all other candidate pairs. Note 
that existing methods commonly use this binary labeling strat-
egy. We measure the performance of TaxoComplete-Matching on 
the SemEval-Verb (see Figure 4 (a)) and the MAG-PSY-WIKI (see 
Figure 4 (b)) datasets in terms of HIT@1, HIT@10, and MR. 
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(a) SemEval-Verb 

(b) MAG-PSY-WIKI 

Figure 4: Performance of TaxoComplete-Matching with diferent labeling functions measured by HIT@1, HIT@10 and MR, 
while varying the sampling rate on the (a) SemEval-Verb (top fgures) and (b) MAG-PSY-WIKI (bottom fgures). 

We observe that TaxoComplete-Matching with signed labeling 
function (i.e., ±1/� , ±1/�2) has lower performance than other label-
ing functions. When using a negative sign to indicate the direction 
of an edge, TaxoComplete-Matching learns that concepts related 
as <query, descendant node> represent opposite semantics, which 
deteriorates its performance. We also observe that TaxoComplete-
Matching with unsigned labeling functions (i.e., 1/� , 1/�2) achieves 
better performance than it does with binary and signed labeling 
functions. These results show the efectiveness of using the graph 
distance between nodes in learning their semantic relatedness. 

4.4.2 Impact of the Sampling Rate. The sampling rate �� controls 
the size of the randomly sampled candidate nodes in the distant 
neighborhood of a query node. We study the impact of this rate in 
Figure 4, where we vary the sampling rate between 0 and 50 on the 
SemEval-Verb (see Figure 4 (a)) and the MAG-CS-WIKI (see Figure 4 
(b)). We measure the performance of TaxoComplete-Matching with 
all discussed labeling functions in Section 4.4.1 in terms of HIT@1, 
HIT@10, and MR. First, we observe that, as the sampling rate in-
creases, the performance of TaxoComplete-Matching with signed 
labeling functions decreases. Second, we observe that the sampling 
rate does not impact the performance of TaxoComplete-Matching 
with the binary labeling function, particularly in HIT@1, where it 
remains almost constant when varying the sampling rate. Finally, 
we observe that the performance of TaxoComplete-Matching with 
unsigned labeling increases when increasing the sampling rate un-
til reaching a sampling rate of 20, then it fuctuates with higher 

sampling rates. Such a result is consistent on both datasets, mea-
sured by HIT@1, HIT@10, and MR. The optimal performance is 
reached by TaxoComplete-Matching with the labeling function 1 

� 
for �� = 20 on both datasets. The observed performance fuctuation 
of TaxoComplete-Matching could be due to the large size of the 
distant neighborhood compared with the local neighborhood (over 
30x), which decreases TaxoComplete-Matching ability to discrimi-
nate between the two. Overall, the variation of the performance of 
TaxoComplete-Matching with diferent �� indicates the importance 
of selecting an adequate sampling rate. 

5 CONCLUSION 
In this paper, we presented TaxoComplete, a self-supervised tax-
onomy completion framework that learns the representation of 
nodes leveraging their position in the taxonomy. Our framework 
draws inspiration from recent advances in semantic matching to 
learn the semantic distance separating pairs of nodes. In addition, 
it injects the direction of the edges into the node representations 
using a direction-aware propagation module. Extensive validation 
on real-world datasets demonstrates the efectiveness of TaxoCom-
plete, which substantially outperforms state-of-the-art methods on 
taxonomy completion tasks. 
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A APPENDIX 

Figure 5: Distribution of nodes over the levels of the taxon-
omy in (a,b) SemEval and (c,d) MAG. 

A.1 Dataset Properties 
Figure 5 and 6 illustrate the properties of our datasets. We represent 
the number of nodes per level for the SemEval datatset in Figure 5 
(a,b) and the MAG datatset in Figure 5 (c,d). We observe that the 
SemEval dataset have a skewed distribution of nodes over diferent 
levels of the taxonomy compared with the MAG dataset. We also 
represent the number of nodes per degree for the SemEval datatset 
in Figure 6 (a,b) and the MAG datatset in Figure 6 (c,d). For clarity 
sake, we do not represent the number of nodes with a degree one 
because they are very high compared with the number of nodes 
with a degree two, where there are 43622 nodes with degree one 
on average in SemEval datasets and 17444.5 on average in MAG 
datasets. We observe that the decrease of the number of nodes 
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Figure 6: Number of nodes per degree in (a,b) SemEval taxon-
omy and (c,d) MAG taxonomy. 

Figure 7: Comparison of the cosine distance with the inverse 
of the graph distance in MAG-CS-WIKI. 

per degree is slower in the MAG dataset than the SemEval dataset. 
Hence, the MAG dataset is denser than the SemEval dataset. 

A.2 Semantic Similarity with 
TaxoComplete-Matching 

Figure 7 illustrates the comparison between the semantic similarity 
computed using TaxoComplete-Matching and the inverse of the 
graph distance separating a random sample of pairs of nodes in 
the MAG-CS-WIKI. To measure the semantic similarity, we use the 
cosine distance between pairs of node representation. We observe 
that the cosine distance correlates with the inverse of the graph 
distance which shows TaxoComplete-Matching ability to learn the 
taxonomic position of nodes. 
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